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Abstract

Recent advances in image inpainting increasingly use gen-
erative models to handle large irregular masks. However,
these models can create unrealistic inpainted images due
to two main issues: (1) Unwanted object insertion: Even
with unmasked areas as context, generative models may
still generate arbitrary objects in the masked region that
don’t align with the rest of the image. (2) Color inconsis-
tency: Inpainted regions often have color shifts that causes
a smeared appearance, reducing image quality. Retrain-
ing the generative model could help solve these issues, but
it’s costly since state-of-the-art latent-based diffusion and
rectified flow models require a three-stage training pro-
cess: training a VAE, training a generative U-Net or trans-
former, and fine-tuning for inpainting. Instead, this paper
proposes a post-processing approach, dubbed as ASUKA
(Aligned Stable inpainting with UnKnown Areas prior), to
improve inpainting models. To address unwanted object
insertion, we leverage a Masked Auto-Encoder (MAE) for
reconstruction-based priors. This mitigates object halluci-
nation while maintaining the model’s generation capabil-
ities. To address color inconsistency, we propose a spe-
cialized VAE decoder that treats latent-to-image decoding
as a local harmonization task, significantly reducing color
shifts for color-consistent inpainting. We validate ASUKA
on SD 1.5 and FLUX inpainting variants with Places2 and
MISATO, our proposed diverse collection of datasets. Re-
sults show that ASUKA mitigates object hallucination and
improves color consistency over standard diffusion and rec-
tified flow models and other inpainting methods.

1. Introduction
Image inpainting [6] fills masked areas of images while
maintaining consistency with the unmasked regions. Tra-
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Figure 1. Image inpainting on 10242 images. ASUKA solves
two issues existed in current diffusion and rectified flow inpainting
models: (1) Unwanted object insertion, where randomly elements
that are not aligned with the unmasked region are generated; (2)
Color-inconsistency: the color shift of the generated masked re-
gion, causing smear-like traces. ASUKA proposes a post-training
procedure for these models, significantly mitigates object halluci-
nation and improves color consistency of inpainted results.

ditional inpainting algorithms [6, 21, 30, 41, 69] often re-
sult in blurred synthesis when reconstructing masked re-
gions [62]. The Generative Adversarial Networks (GANs)
based models could fill complex mask structures, achiev-
ing impressive inpainting results [9, 24, 27, 33, 46, 59, 75,
78, 99]. However, they still struggle with general challeng-
ing inpainting cases, particularly in filling large holes. Re-
cently, more powerful generative model like Stable Diffu-
sion [67] and FLUX [40], with their large model capacity
and extensive training dataset, act as versatile tools for im-
age inpainting. These models mainly follow the latent gen-
eration pipeline, first encode the image into a small latent
space, then train the inpainting model in this latent space.

However, these latent-based generative inpainting mod-
els still suffer from some issues, causing the inpainted im-
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age lacking fidelity. In particular:
(1) The unwanted object insertion problem, where the
model generates random, unreasonable elements to fill
masked regions, as depicted in first to second rows in Fig. 1.
This issue comes from the random masking strategy used to
train generative models. This strategy introduces training
cases where foreground objects are completely masked but
the models are forced to fill masked regions with foreground
objects. Consequently, these models will hallucinate unrea-
sonable objects devoid of contextual information. Adjusting
prompts may reduce this risk, but the best prompt is image-
dependent, making it infeasible for practical applications.
(2) Furthermore, the inpainted results of latent inpainting
models suffer from color inconsistency problem. This prob-
lem, less explored in academia but critical for real-world ap-
plications, results in color discrepancies between inpainted
and unmasked regions, including mismatches of bright-
ness, saturation, luminance and hue, and exhibits smear-like
traces in the image, as shown in the second to third rows in
Fig. 1. Essentially, this color-inconsistency comes from the
misalignment between the pixel distributions of filled re-
sults and original images due to imperfect latent generative
model and VAE, as illustrated in Fig. 4. Notably, this issue
is not a big problem for generation, given that the whole im-
age is generated, and the color shift is consistent across pix-
els. However, this issue is important for inpainting tasks, as
we have ground-truth pixels for unmasked regions. When
we replace the unmasked regions of the generated image
with the ground-truth pixels, the color inconsistency largely
influence the fidelity of the image. This issue may be solved
by training a better VAE and explicitly enforce the color
consistency. However, training or fine-tuning the VAE en-
coder introduces the subsequent fine-tuning of the latent
generative models to match the new latent space, which is
costly. In this paper, we propose to freeze the VAE encoder
and the latent generative models, while fine-tuning the VAE
decoder to improve color consistency. Specifically, we re-
formulate the decoding from latent to image as a local har-
monization task, explicitly reduce the color inconsistency.

Formally, to mitigate object hallucination and enhance
the color-consistency of image inpainting models, we
present the Aligned Stable inpainting with UnKnown Areas
prior (ASUKA) framework. ASUKA enhances the latent
inpainting models with regression-based reconstruction and
distribution-aligned generation. This results in improved
image inpainting models that avoid generating unreasonable
elements in the masked region and reduces mask-unmask
color inconsistency. The stable diffusion models [67] and
the rectified flow models [40] adopt a VAE to compress im-
age into latent and perform inpainting in the latent space.
We manipulate their generation and decoding processes to
reduce object hallucination and improve color consistency.

We propose using the Masked Auto-Encoder (MAE)[31]

as a prior to guide and stabilize the generation process.
As shown in Fig. 1, MAE yields stable yet blurred results,
while generative models may produce implausible content
despite their impressive generation capacity. By aligning
MAE prior with latent generative models, we reduce object
hallucination without damaging performance.

We redesign the VAE decoder to address color inconsis-
tencies between masked and unmasked regions by acting as
a local harmonization model conditioned on unmasked im-
age pixels. Our decoder can be used as a plug-and-play
module to improve general inpainting models, such as text-
guided inpainting.

These steps collectively enable ASUKA to achieve
less object hallucination and more color-consistent inpaint-
ing results. We adopt ASUKA on two typical inpait-
ning models, Stable Diffusion v1.5 [67] and FLUX [40],
to validate the generalization ability of ASUKA on dif-
ferent generation architectures. To evaluate the effec-
tiveness of inpainting algorithms across various scenar-
ios and mask shapes, in addition to the benchmark
dataset Places 2 [101], we further utilize an evaluation
dataset named MISATO, which selects representative test-
ing images from Matterport3D [13], Flickr-Landscape [47],
MegaDepth [45], and COCO 2014 [48]. This dataset cov-
ers four distinct domains—landscape, indoor, building, and
background—making it diverse to serve as a benchmark for
evaluation. Experiments on MISATO and Places 2 with
large irregular masks validate the efficacy of ASUKA.
Contributions ASUKA enhances image inpainting with
color-consistency and mitigate object hallucination while
leveraging the generation capacity of the frozen inpainting
model. It achieves this through two main components: (1)
Context-Stable Alignment: ASUKA aligns the stable MAE
prior with generative models to provide a context-stable
estimation of masked regions, replacing the text-condition
with MAE prior. (2) Color-Consistent Alignment: ASUKA
re-formulates the decoding from latent to image as a lo-
cal harmonization task, trains an inpainting-specialized de-
coder to align masked and unmasked regions during decod-
ing and thus mitigates color inconsistencies.

2. Related Works
Image inpainting is the task of filling missing image
regions with consistent pixels. Traditional methods using
patch matching [5, 22, 95] or differential equations [6, 7, 12]
focus on low-level features and often struggle with large
gaps. GAN [27]-based inpainting [10, 44, 62, 91, 99] intro-
duces adaptive convolutions [50, 91, 93], attention [39, 89,
90, 92], and frequency-based learning for high-resolution
results [17, 75, 87]. Methods like Co-Mod [99] address
the challenging ill-posed inpainting issue [44, 100] and
improve realism but may produce unstable outputs or un-
wanted artifacts due to random latent variables. Techniques
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with higher reconstruction penalties [10, 59, 75] offer more
stability but can appear blurry on larger missing areas. Re-
cent diffusion models [3, 67, 70] and rectified flow mod-
els [25, 40] achieve impressive results yet share GANs’ lim-
itation of learning distributions over exact pixel alignment,
which leads to unwanted object insertion.
Adapting latent generative models Latent diffusion mod-
els (LDMs) [67] and rectified flow models [25, 40] are pop-
ular due to their ability to encode image semantics at lower
resolutions by combining a VAE to learn a latent space and
a generative model within this space. Various methods have
been developed to introduce new conditions to these mod-
els, such as image-inversion for text-guided image transla-
tion [56], textual-inversion for personalization [26], LoRA
fine-tuning [34], and controlnet [96] to add diverse con-
ditions. Our goal is to mitgate object hallucination while
preserving generation quality, so we avoid fine-tuning the
generative backbone. For inpainting, we remove the text
condition and instead guide the generation using a Masked
Auto-Encoder [31] prior for masked regions.
Information loss in latent inpainting models Although
claimed only eliminates imperceptible details, the VAE
used by diffusion and rectified flow models causes distor-
tion in the reconstruction of images. In addition, the gap be-
tween generated latent and real latent also causes the color
inconsistency. See Fig. 4 for illustrative examples. Ope-
nAI [61] proposes a larger decoder to improve the decoding
quality of SD’s latent. Luo et. al. [55] propose a frequency-
augmented decoder to address the super-resolution case.
Zhu et. al. [103] propose to preserve unmasked regions dur-
ing decoding. In this paper, we ensure the low-frequency
color color-consistency in the decoding process.
Masked Image-Modeling [4] (MIM) is an active re-
search area in self-supervised learning. Typical MIM meth-
ods [4, 14, 31, 86] split images into visible and masked
patches, learning to estimate masked patches from visible
patches. Training targets for visible patches encompass
pixel values [31], HOG features [82], and high-level seman-
tic features [83]. While the primary objective of MIM is
representation learning, its potential effectiveness in image
generation is also noteworthy. Cao et. al. [10] adopts MAE
features and attention scores to assist the convolutional in-
painting model better in handling long-distance dependen-
cies. In contrast, this paper uses MAE prior to enhance the
context-stability of diffusion and rectified flow models.
Image harmonization aims to blend a foreground object
with a background image while keeping the final result real-
istic and visually consistent [76]. This task is often treated
as an image translation problem [19, 20, 28, 29, 51, 57, 60,
66, 79, 102]. Similarly, our work addresses color inconsis-
tency issues in latent generative models. However, unlike
standard image harmonization, where inconsistencies arise
from combining images from different sources and thus dif-
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Figure 2. ASUKA tackles the unwanted object insertion issue by
adopting the MAE to provide a stable prior for frozen latent gener-
ative models to maintain the generation capacity while mitigating
object hallucination. For the color-inconsistency issue, ASUKA
utilizes an inpainting-specialized decoder to achieve mask-unmask
color consistency when decoding latent.

ferent real image distributions, color inconsistencies in la-
tent generative models stem from imperfections in the VAE
and the generative model itself.
Object insertion and removal are two opposite tasks in
image inpainting. Object insertion focuses on adding fore-
ground objects to the image using various methods, such as
shape-guided masks [85, 94], text prompts [8, 16, 80, 85],
learnable prompts [16, 81, 104], extra network modules [15,
35], or reference images of objects [71], etc. Some studies
also explore completing partial objects using reference im-
ages [11] or learnable prompts [81]. Object removal, on the
other hand, aims to erase unwanted objects from an image.
Common approaches include attention reweighting [42] and
learnable prompts [81, 104]. These techniques can help cre-
ate new datasets [23]. On the other hand, creating new
datasets can also benefit these tasks [84]. While most re-
search focuses on designing better inpainting models, our
work takes a different approach. We analyze a fundamental
problem with latent generative models: they often introduce
unwanted objects in the inpainting area. We also propose
solutions to address this issue.

3. Methodology

Problem setup Inpainting takes as inputs a masked image
to complete with a mask to indicate the missing region. The
target of inpainting is to fill the missing region based on the
information of unmasked regions to generate high-fidelity
images. In this paper, we focus on the standard inpaint-
ing task without utilizing other conditions. We focus on
the general issues of inpainting models, (1) unwanted ob-
ject insertion: unstable and uncontrollable hallucinations,
yielding random elements generated in the masked region;
(2) color-inconsistency: mask-unmask color inconsistency
issue, yielding smear-like traces in the masked region.

We evaluate our proposed solution on two inpaint-
ing models: the Stable Diffusion v1.5 inpainting model
(SD) [67] and the Control-Net fine-tuned FLUX inpaint-
ing model (FLUX) [2]. We provide a brief introduction of
these models in the appendix. We will demonstrate that our
ASUKA effectively improves unwanted object mitigation
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and color consistency of these models.
Overview The framework of the proposed Aligned Sta-
ble inpainting with Unknown Areas prior (ASUKA) is il-
lustrated in Fig. 2(a). ASUKA adopts the pre-trained latent
inpainting models. Our target is to mitigate object hallu-
cination and provide more color-consistent inpainting re-
sults while fully exploiting the generation capacity of frozen
models. ASUKA includes (1) a context-stable alignment to
align stable Masked Auto-Encoder (MAE) prior for masked
region with generative models and (2) a color-consistent
alignment to align ground-truth unmasked region with gen-
erated masked region during decoding. To this end, we
freeze the latent generative models, while replacing the text-
condition part with our proposed MAE prior to mitigate ob-
ject hallucination. To align the MAE prior to generative
models, we introduce an alignment module, trained via the
training objective of generative models. Additionally, to
align masked and unmasked regions during decoding and
resolve the information loss issue from VAE decoder and
generative model which causes mask-unmask color incon-
sistency, we train an inpainting-specialized decoder to de-
code the latent back to the image space for seamless color-
consistency. Combined together, ASUKA achieves less ob-
ject hallucination and more color-consistent inpainting.

3.1. Mitigate Object Hallucination via Stable Prior
3.1.1. Masked Auto-Encoder Prior
Context-stable prior While recent generative models rely
on random noise to provide more diverse generation results,
it leads to the generation of random objects unexpectedly.
Some inpainting models also utilize the reconstruction loss
to reconstruct the masked region, but they also incorporate
other types of losses like perceptual-loss [75] which im-
plicitly reduces the stability. In contrast, MAE is known
to provide a context-stable estimation of masked regions
based purely on the unmasked regions. In this paper, we
utilize MAE to produce the stable prior such that the im-
provement of inpainted result can be explicitly attributed to
the improvement of mitigating object hallucination.
MAE as context-stable prior As MAE is trained on
the L2 reconstruction loss, we can regard the estimation of
MAE as a mean estimation, which can be utilized to provide
a context-stable prior for generative models to not generate
new concepts. However, MAE itself results in average and
blur generations and cannot reconstruct detailed textures of
the masked region, and works poorly if we use MAE prior
as the initial values for the inpainting models to inpaint in
image-to-image style, as in Fig. 3. To this end, we adopt the
MAE to provide prior to stabilizing diffusion models.
Train MAE The original MAE is trained to estimate
random masks uniformly distributed in the image, while
inpainting task usually contains large continuous masks.
Inspired by Cao et. al. [10], we fine-tune the MAE to

Input Image with mask MAE SD with MAE initial latents ASUKA

Figure 3. Use MAE prior for image-to-image translation (start
from 80% noise rate) via SD achieves poor inpainting results.

inpainting masks. To adapt MAE for more practical in-
painting scenarios, we construct a systematic masking strat-
egy. The mask basis contains: object-shape mask, irregu-
lar mask, and regular mask. We collect object-shape masks
from COCO [48] object segments. We use irregular masks
from previous studies, including Co-Mod mask [99] and
LaMa [75] mask. The regular masks contains rectangle and
complement rectangle mask. To ensure generalization and
coverage, for each mask we generate from mask basis with
the probability of 50% object-shape, 40% irregular, and
10% regular. For object-shape mask basis, we combine it
with irregular mask with the chance of 50%. This construc-
tion of mask style estimates the masks occurs in inpainting
tasks, especially for the object removal and user-specified
irregular masks. We control the mask ratio in the range
of [0.1, 0.75] to follow the training scenario of MAE. For
masks smaller than the ratio of 75%, we enlarge the mask
ratio to 75% with randomly selected mask regions. This
benefits ASUKA to tackle the large hole inpainting task.

3.1.2. Align MAE Prior with Generator
Replace text-condition with MAE prior Generative in-
painting models are not trained on MAE priors. As we do
not assume a text condition for inpainting task, we propose
to replace the text-condition of generative models with our
proposed MAE prior condition. However, as we do not fine-
tune the generative models, they cannot directly align well
with the MAE prior. Hence, we introduce the alignment
module to align MAE with generative models in both di-
mension and distribution perspective, as shown in Fig. 2(b).
Dimension alignment Particularly, the MAE prior FMAE

is of size Nm ×Mm, where Nm is the sequence length and
Mm is the feature dimension. To align it with the diffusion
or flow condition of size Ns ×Ms, we adopt a linear layer
to map the feature dimension from Mm to Ms and set Ns =
Nm to preserve the local MAE prior.
Distribution alignment After aligning the dimension, we
use self-attention blocks to learn to better guiding gener-
ative models, leading to the condition CMAE. We train
our alignment module using the standard generation objec-
tive with the same masking strategy used to train the MAE,
keeping other modules frozen.
Handle misalignment When training the alignment mod-
ule with the set (input image, MAE prior, inpaint result),
misalignment may arise. For example, if an object is com-
pletely masked, the MAE will predict the masked area with
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background, whereas the generative models are trained to
recreate the object. This difference can lead the alignment
module to mistakenly disregard the MAE prior. To address
this, we improve the generative models’ adherence to the
MAE prior by substituting the MAE predicted prior with the
MAE reconstructed prior at a probability of p. The MAE re-
constructed prior involves using MAE to recreate the image
without masking any area, ensuring MAE has access to all
information needed for reconstruction. This approach helps
train the alignment module to better guidance.

3.2. Enhancing Color-Consistency in Decoding
3.2.1. Color-Inconsistency
Color-inconsistency is a general problem The color-
inconsistency between masked and unmasked regions is a
general problem in generative inpainting models. This in-
consistency comes when the generative masked region suf-
fers from a color shift compared with the unmasked region.
As in Fig. 4, the color shift happens in all kinds of scenarios,
including indoor and outdoor scenes, random or continuous
masks, and may cause darker or lighter color shift. This
shift comes from the imperfect VAE and latent generator.
Information loss of VAE Popular latent diffusion and rec-
tified flow models perform all the generative processes in
the latent space and subsequently decodes these latent codes
back to image space using VAE. Despite the decoder being
trained to reconstruct the image, it encounters challenges
associated with information loss. Particularly in tasks like
inpainting, we have ground-truth values for the unmasked
region. Though Rombach et. al. [67] claimed that the diffu-
sion model should prioritize the informative semantic com-
pression, while the VAE is used to tackle perceptual com-
pression with high-frequency details, we argue that low-
frequency semantic loss in VAE could not be neglected, as
verified in Fig. 6 (b). The VAE will not only noticeably
degrades high-frequency details but also shifts in colors.
This shift can be verified by repeated reconstruction with
VAE, as shown in Fig. 6 (a) where larger shift is observed
during repeated reconstruction. As human is sensitive to
low-frequency information changes in the image, even sub-
tle color shifts can induce significant inconsistencies. This
issue is more severe in irregular or large mask cases.
Gap between real and generated latents Apart from the
information loss of VAE in reconstruction, there is another
gap between the generated and real latents. This gap also
causes color inconsistency even if we alleviate the VAE re-
construction loss, as in Fig. 5. We need to solve both the loss
of VAE and the latent generator for better color-consistency.

3.2.2. Mask-Unmask Align during Decoding
We propose to solve the color-inconsistency and ensure the
mask-unmask alignment during VAE decoding.
Unmask-region conditioned decoder The basic solution

Figure 4. The color shift exists in all kinds of scenarios in in-
painted images, including indoor and outdoor scenes, random or
continuous masks, and may cause darker or lighter color shift.

Masked Image w/o latent aug w/ latent aug

Figure 5. Inpainting w/ v.s. w/o latent augmentation. The latent
augmentation handles the gap between generated and real latent.

(b) Relative log amplitude (y-axis) and frequency (x-axis)(a) Images decoded by KL-VAE repeatedly for different times

Figure 6. (a) The color of the reconstruted image is shifted, where
larger shift is observed during repeated reconstruction. (b) VAE
suffers from non-ignorable shifts in low-frequency fields.

SD1.5

DecoderLoss

50%

50%

Timestep from 
[500,1000)

Masked image & mask

Enc.
Dec EncU-Net

Latent Aug.

Color Aug.

Figure 7. Decoder trained by local harmonization task, enhancing
mask-unmask consistency by reconstructing original image guided
by the unmasked region from augments in color and latent spaces.

is to incorporate the ground-truth unmasked region in the
decoding, then we could have access to the unbiased color
information. Zhu et. al. [103] adopts decoder with addi-
tional inputs of masked images. However, it still fails to
handle the incompatible color and texture between the orig-
inal images and compressed ones in challenging scenes as
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(a) Masked image (b) Vanilla decoder (c) Conditional decoder (d) ASUKA decoder

Figure 8. SD1.5 inpainting results decoded by (b) vanilla decoder
of SD [67], (c) conditional decoder [103], (d) our decoder. Our
decoder largely alleviate the mask-unmask color inconsistency.

verified in Fig. 8 (c). The gap between degraded and orig-
inal images makes it challenging to explicitly address this
issue.
Mask-unmask color-consistent decoder To train the de-
coder to ensure color-consistency between generated latent
and unmasked pixels, we re-formulate the decoding as a lo-
cal harmonization task. Our decoder involves additional in-
puts of masked images in the pixel-wise color space and
the 0-1 mask. To properly train the decoder, we propose the
color and latent augmentation as shown in Fig. 7 to estimate
and enlarge the color-inconsistency. We follow the standard
VAE training pipeline, but replacing the inputs with aug-
mented ones. Particularly, we use the original image as the
reconstruction target and use color and latent augmentation
to corrupt input image, simulating the information loss of
VAE and domain gap between generated and real latent, re-
spectively. This forces the decoder to reconstruct the clean
image based on the ground-truth unmasked region.
Color augmentation We use color augmentation to cap-
ture the VAE loss as in Fig. 8 (b). Empirically, further
conditioned on unmasked image alleviate but not solve the
color inconsistency issue, as shown in Fig. 8 (c). Hence,
we need to explicitly train the decoder to ensure color con-
sistency. To this end, we augment all training images in
brightness, contrast, saturation, and hue, and requires the
decoder to reconstruct original image conditioned on the
unaugmented unmasked image. This encourages the de-
coder to faithfully follow the unmasked regions.
Latent augmentation To simulate the gap between gen-
erated and real latent, we incorporate the artifacts gener-
ated from the generative models to train the decoder. How-
ever, denoising to real images iteratively is notably time-
consuming, even with DDIM [73]. To balance the efficiency
and efficacy, we design a one-step estimation. As our target
is to capture the generation gap, we use the clean latent z0
and all-zero mask M as conditions. This tells the generator
all the needed information to generate the clean latent, en-

suring the generated latent preserves content and only shift
from the generation gap. We follow the standard pipeline to
estimate z0 with modified conditions as:

ẑ0 =
1

a
(zt − bεθ ([zt; z0;M], t)), (1)

where the timestep t is randomly sampled from [500, 1000);
a indicates the prescribed variance schedule, a2 + b2 = 1
in diffusion models while a + b = 1 in rectified flow mod-
els; εθ(·) is the frozen generator take as inputs noised zt,
unmasked z0, and all-zero masking M. The large step de-
noising is chosen to increase the distribution gap, as empir-
ically the generator could produce reliable results in small
t given the unmasked latent condition z0. Then we decode
ẑ0 to image as the latent augmented inputs. This makes la-
tent augmentation an off-line strategy. We apply latent aug-
mentation to 50% training images. The fine-tuned decoder
showcases superior consistency as compared in Fig. 8.

4. Experiments
Evaluation datasets We follow previous works to evaluate
on the standard benchmark Places 2 [101] validation set of
36,500 images. In addition, to validate across different do-
mains and mask styles, we construct a evaluation dataset,
dubbed as MISATO, from Matterport3D [13], Flickr-
Landscape [47], MegaDepth [45], and COCO 2014 [48] to
handle indoor, outdoor, building and background inpaint-
ing, respectively. We select 500 representative examples of
size 5122 and 10242 from each dataset, forming a total of
2,000 testing examples. See details in the appendix.
General evaluation metrics We use the Learned Per-
ceptual Image Patch Similarity (LPIPS) [97] to calculate
the patch-level image distances, Fréchet Inception Distance
(FID) [32] to compare the distribution distance between
generated images and real images, and Paired/Unpaired In-
ception Discriminative Score (P-IDS/U-IDS) [99] to mea-
sure the human-inspired linear separability.
Evaluate object hallucination and color-consistency We
introduce two new metrics to assess the object hallucination
and color-consistency of inpainted images. (1) CLIP@mask
(C@m): We use CLIP to get visual features from both the
ground-truth and the inpainted masked region, then calcu-
late their cosine similarity. Following the standard CLIP
score, we multiply the result by 100 and clip negative val-
ues, yielding a range from 0 to 100. (2) Gradient@edge
(G@e): We calculate the average pixel gradient difference
along the edges of the masked region with respect to the
ground-truth image to assess color smoothness. A smaller
gradient difference means more similar color transitions to
the ground-truth image and, therefore, less color shift.
Competitors We primarily use the SD v1.5 inpainting
model [67] to analyze and compare ASUKA with competi-
tors, while validating ASUKA’s generalization ability with
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-token ASUKA

Figure 9. Inpainting results for 5122 images. GANs generate blurred results; SD variants hallucinate unreasonable objects and suffer from
color shift. ASUKA achieves unwanted-object-mitigated and color-consistent inpainting. More results are in the appendix.

Table 1. Quantitative comparison on MISATO and Places 2. Top-3 results are colored.

Dataset MISATO Places 2
Method LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓ LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

Co-Mod [99] 0.179 17.421 0.243 0.109 0.924 52.106 0.267 5.794 0.274 0.096 0.951 166.914
MAT [44] 0.176 17.261 0.255 0.122 0.925 48.722 0.202 3.765 0.348 0.195 0.955 163.442
LaMa [75] 0.155 15.436 0.260 0.135 0.928 46.270 0.202 6.693 0.247 0.050 0.953 153.653
MAE-FAR [10] 0.142 13.283 0.282 0.153 0.940 43.613 0.174 3.559 0.307 0.105 0.958 149.843
SD-Repaint [54] 0.227 27.861 0.016 0.007 0.915 80.410 0.251 12.466 0.217 0.045 0.947 176.421
SD [67] 0.168 12.812 0.345 0.211 0.951 63.844 0.193 1.514 0.375 0.207 0.959 160.705
SD-text 0.164 12.603 0.337 0.207 0.952 63.776 0.191 1.506 0.373 0.202 0.959 160.418

SD-token [81] 0.160 12.517 0.331 0.204 0.955 61.700 0.189 1.477 0.390 0.234 0.960 158.924
SD-IP [88] 0.157 12.204 0.398 0.242 0.956 62.704 0.186 1.539 0.389 0.173 0.953 148.571
SD-T2I [58] 0.166 13.806 0.365 0.222 0.949 63.866 0.195 1.720 0.384 0.160 0.951 148.549
SD-CAEv2 [98] 0.157 29.179 0.193 0.045 0.901 69.890 0.192 6.887 0.287 0.065 0.921 151.863
SD-LaMa [75] 0.157 12.159 0.390 0.256 0.956 62.726 0.188 1.522 0.389 0.168 0.953 148.461

ASUKA-SD 0.150 11.495 0.423 0.312 0.958 47.753 0.183 1.230 0.413 0.287 0.961 147.733

FLUX. We consider three SD v1.5 inpainting variants: SD:
uses a null-prompt for unconditional generation; SD-text:
uses ”background” as a prompt since no captions are used
in inpainting; SD-token [81]: uses learnable tokens trained
with ASUKA’s pipeline. To test other ways of incorporating
the MAE condition, we implement the following: SD-IP,
uses IP-Adapter [88]; SD-T2I, uses T2I-Adapter [58]; SD-
CAEv2, uses a CLIP-style alignment module CAEv2 [98];
We also test SD-LaMa, which inputs LaMa [75] inpainting
results instead of MAE. We also compare with leading in-
painting algorithms Co-Mod [99], MAT [44], LaMa [75],
MAE-FAR [10], and SD-Repaint [54]. We provide imple-

mentation details in the appendix.

4.1. Comparison on Benchmarks
Quantitative comparison Results on SD are reported in
Tab. 1. (1): Although ASUKA-SD is based on a fixed SD
model, it consistently outperforms SD across all evalua-
tion metrics, achieving state-of-the-art results in FID, U-
IDS, and P-IDS. Notably, U-IDS and P-IDS are closely
aligned with human preferences [99] and have a potential
maximum score of 0.5, highlighting ASUKA’s strong per-
formance. (2): Compared to other adapters that align the
MAE prior with SD, ASUKA-SD shows consistently supe-
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Table 2. FLUX and ASUKA-FLUX on MISATO@512. Results
on 1K and qualtitative results are in the appendix.

Decoder LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

FLUX 0.254 12.839 0.351 0.223 0.951 65.928
ASUKA-FLUX 0.206 11.372 0.428 0.327 0.962 48.635

rior performance across all metrics. This demonstrates the
effectiveness of our straightforward alignment module. (3):
While the LaMa condition improves inpainting quality, as
shown by FID and IDS scores, it is less effective than the
MAE condition. When using the MAE condition as a prior,
improvements can be attributed to better mitigation of ob-
ject hallucination. (4): ASUKA-SD consistently performs
better than all competitors on CLIP@mask, showcasing the
strength of its improved mitigation of object hallucination.
(5): Pixel-based GAN inpainting models perform better in
the Gradient@edge metric, suggesting that color shifts may
originate from the compressed latent space. ASUKA-SD,
however, still shows significant improvements over all SD
variants, highlighting its enhanced color consistency. (6):
The second-to-best LPIPS scores are partially due to us-
ing a frozen SD, where ASUKA achieves consistent im-
provements but remains constrained by the frozen U-Net.
These results confirm that ASUKA-SD improves color con-
sistency and mitigation of object hallucination in inpainting,
even when using frozen latent inpainting models. This ad-
vantage is evident both in the in-distribution dataset Places2
and the out-of-distribution dataset MISATO.
Qualitative comparison examples are shown in Fig. 9.
(1) The state-of-the-art inpainting algorithms usually suf-
fer from unnatural generation, for example the unnatural
boundaries in the third and fourth rows, and failed inpaint-
ing of tower in the third-to-last row. LaMa and MAE-FAR
sometimes lead to blurred inpainting results, especially in
the scenario of large continuous masks. (2) The SD vari-
ants usually suffer from the unwanted object insertion issue
and hallucinate unreasonable objects, in almost all the illus-
trated images. (3) In contrast, ASUKA enjoys unwanted-
object-mitigated and color-consistent inpainting.

4.2. Further Analysis of ASUKA
In this part, we conduct more experiments to analysis
ASUKA. More analysis can be found in the appendix.
Extension to FLUX To demonstrate ASUKA’s versatility,
we trained it on FLUX (see Tab. 2). ASUKA-FLUX con-
sistently outperforms the original FLUX. Results on Places
2 and qualitative comparisons are in the appendix.
Ablation of decoder For the decoder, we compare
ASUKA-SD with (1) VAE: the decoder used in SD; (2) +
cond.: the decoder conditioned on unmasked image [103];
(3) + color: only trained with color augmentation ; Results
are in Tab. 3, showing the superiority of our decoder.

Table 3. Comparison of different decoders for SD.

Decoder LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

VAE 0.156 11.949 0.387 0.253 0.953 63.142
+ cond. 0.151 11.634 0.410 0.272 0.955 48.588
+ color 0.152 11.603 0.407 0.273 0.954 49.538

Ours 0.150 11.495 0.423 0.312 0.958 47.753

Table 4. Ablation of different alignment modules.

Align LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

linear 0.155 11.934 0.400 0.263 0.953 48.983
attn 0.152 11.613 0.403 0.268 0.954 48.785
cross x4 0.152 11.762 0.405 0.256 0.953 48.279

Ours 0.150 11.495 0.423 0.312 0.958 47.753

Ablation of alignment module We validate the efficacy
of our alignment module step by step: (1) linear: Use linear
layer to align feature dimension only; (2) attn: Based on lin-
ear, further use a single self-attention block to align the dis-
tribution; (3) cross x4: we instead use learnable query and 4
cross-attention layers to learn the MAE prior. ASUKA-SD
adopts 4 self-attention blocks. Results are shown in Tab. 4.
The self-attention block shows improved results compared
with only align dimension and cross-attention block. Using
4 self-attention blocks improves the capacity.

5. Conclusion

In this paper, we proposed Aligned Stable inpainting with
Unknown Areas prior (ASUKA) to achieve unwanted-
object-mitigated and color-consistent inpainting via frozen
latent inpainting models. To avoid unwanted object inser-
tion, we adopt a reconstruction-based masked auto-encoder
(MAE) as the context-stable prior for masked region purely
from unmasked region. Then we align the context-stable
prior to frozen generative models with the proposed align-
ment module. To achieve color-consistency, we resolve
the mask-unmask color inconsistency in the latent decoding
process. We train an unmask-region conditioned VAE de-
coder to perform local harmonization during the decoding
process. To validate the efficacy of inpainting algorithms
in different image domains and mask types, we introduce
an evaluation dataset, named as MISATO, from existing
datasets. We propose two new metrics to explicitly evaluate
the object hallucination and color-consistency of inpainted
images. ASUKA enjoys unwanted-object-mitigated and
color-consistent inpainting results and superior than leading
inpainting models.
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Supplementary Material

6. Brief Introduction of Backbone Models
We evaluate our proposed solution on two inpainting mod-
els: the Stable Diffusion v1.5 inpainting model (SD) [67]
and the Control-Net fine-tuned FLUX inpainting model
(FLUX) [2]. Both models are representative latent inpaint-
ing models that use a VAE [38] to compress images into
a smaller latent space. In SD, a diffusion process [72]
maps the latent space to random Gaussian noise, and a U-
Net [68] learns the reverse denoising path. Text condition
is introduced through cross-attention layers [77]. The in-
painting version of SD extends the U-Net input by concate-
nating the masked image and mask with the noise along
the channel dimension. Conversely, FLUX uses rectified
flow [1, 49, 52] to map the latent space to noise and a vision
transformer [63] for generation. Text condition is applied
by concatenating text with image patches as transformer in-
put, while a pooled text condition is injected into the nor-
malization layers. Since the original FLUX [40] does not
support inpainting, we use a Control-Net [96] fine-tuned
version [2] that modifies FLUX’s transformer output by
conditioning on the masked image and mask. We demon-
strate that our ASUKA effectively improves unwanted ob-
ject mitigation and color consistency of these models.

7. Details about MISATO
The principle of constructing MISATO is to select the most
representative and diverse examples. To this end, for first
three datasets, we use CLIP visual model [64] to extract se-
mantic visual features. Then we use BisectingKMeans [74]
to cluster each dataset into 500 clusters, and select the clus-
ter centers as the evaluation data. The selected data are cen-
ter cropped and then resized to 5122. For COCO, we focus
on the background inpainting. To this end, for each data
we identify the foreground with provided segmentation and
remove it from the generated masks, yielding a dataset spec-
ified for purely background inpainting.

Combined together, MISATO contains 2000 examples
from four inpainting domains, indoor, outdoor landscape,
building, and background, as shown in Fig. 10. we adopt
the masking strategy as in Sec. 3.1.1 but excluding the rect-
angle and complement rectangle masks. The masking ratio
is set as [0.2, 0.8].

8. Implementation Details
We use Places2 [101] to train ASUKA. For the MAE [31]
used in ASUKA, we train on images of size 2562, which is

Landscape Indoor Building Background

Figure 10. Different image domains in MISATO.

Table 5. Comparison of ASUKA with text-guided SD

Model LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

SD (BLIP2) 0.163 12.536 0.370 0.225 0.880 70.846
ASUKA-SD 0.150 11.495 0.423 0.312 0.958 47.753

Table 6. Ablation of p

Model LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

p=0 0.155 11.804 0.403 0.288 0.940 48.032
p=1 0.152 11.734 0.394 0.296 0.947 47.997
linear decay p 0.152 11.558 0.405 0.307 0.955 47.814
Ours 0.150 11.495 0.423 0.312 0.958 47.753

efficient and produce context-stable guidance for generative
models to generate high-resolution images. We fine-tune
the MAE with a batch size of 1024. We train the alignment
module with AdamW [53] of learning rate 5e-2 with the
standard diffusion objective. We set p as 100% and linearly
decay it to 10% in the first 2K training steps and then freeze.
For SD’s decoder, we fine-tune from [103] for 50K steps
with a batch size of 40 and learning rate of 8e-5 with cosine
decay. For FLUX’s decoder, we fine-tune from the original
decoder with the same setup. We use ColorJitter for color
augmentation, with brightness 0.15, contrast 0.2, saturation
0.1, and hue 0.03.

9. Further Analysis

Comparison with text-guided inpainting We compare
ASUKA with text-guided SD model, as shown in Tab. 5.
We run SD inpainting sing text captions generated by
BLIP2 [43]. ASUKA performs better, since captions de-
scribe the entire image, while MAE focuses on reconstruct-
ing only the masked region, leading to more precise guid-
ance.
Ablation of p We analyze how different values of p affect
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Input Image with mask MAE ASUKA ASUKA guide by blank paper SD “background” cfg=9 SD “blank paper” cfg=9 DALL-E 2 FireFly

Figure 11. The curse of self-attention, causing the MAE falsely estimate the masked region and powerful text-guided diffusion models fail
to generation content based on text prompts. ASUKA potential circumvents this issue by using a blank paper image as the input to the
MAE to provide correct prior.

Table 7. Additional results on benchmark datasets

Dataset Model LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

CelebA-HQ SD 0.132 11.968 0.282 0.101 0.939 42.870
ASUKA-SD 0.129 10.190 0.293 0.134 0.941 40.503

FFHQ SD 0.139 2.235 0.371 0.197 0.944 43.529
ASUKA-SD 0.131 2.060 0.386 0.205 0.955 30.848

Table 8. Our Decoder in Text-Guided Inpainting.

Model CLIPScore↑ LPIPS↓ FID↓ U-IDS↑ C@m↑ G@e↓

SD 0.297 0.180 30.255 0.312 0.930 57.136
ASUKA-SD 0.298 0.175 29.350 0.350 0.931 38.123

Table 9. Effect of each module.

MAE LPIPS↓ FID↓ U-IDS↑ P-IDS↑ C@m↑ G@e↓

SD w/ MAE 0.157 12.093 0.397 0.236 0.953 62.845
SD w/ decoder 0.159 12.075 0.411 0.283 0.954 49.376
ASUKA-SD 0.150 11.495 0.423 0.312 0.958 47.753

ASUKA in Tab. 6. The results show that our warm-up and
freeze strategy outperforms other approaches.
Additional Results We further compare ASUKA with
standard SD on two additional datasets: CelebA-HQ [36]
and FFHQ [37]. As shown in Tab. 7, these results provide
more evidence of ASUKA’s effectiveness.
Our Decoder in Text-Guided Inpainting To test the gen-
eralizability of our decoder, we evaluate it on text-guided
inpainting tasks. We compare our decoder with the origi-
nal SD decoder using 1,000 randomly sampled images from
“jackyhate/text-to-image-2M” [105]. The results in Tab. 8
confirm its effectiveness for general inpainting tasks.
Ablation on independent modules To understand the
contribution of each module in ASUKA, we evaluate SD
with the proposed modules added separately. The results,
shown in Tab. 9, highlight the effectiveness of each module.
Ablation of MAE prior We compare our fine-tuned MAE

Table 10. Comparison of ASUKA using pre-trained MAE v.s.
fine-tuned MAE.

MAE LPIPS↓ FID↓ U-IDS↑ P-IDS↑

pre-trained 0.151 11.513 0.354 0.258
fine-tuned 0.150 11.460 0.368 0.256

Table 11. User-study of top-1 ratio among all the inpainting re-
sults.

Model UOM (%) CC(%)

Co-Mod [99] 3.98 4.98
MAT [44] 7.40 3.20
LaMa [75] 8.18 8.28
MAE-FAR [10] 4.88 5.60

SD [67] 10.58 5.75
SD-text 7.70 15.83
SD-prompt 16.18 15.78
SD-Repaint [54] 1.60 0.55

ASUKA-SD 39.43 40.05

with directly adopting the MAE trained in [10]. To this
end, we train ASUKA with the MAE in [10] using the same
training strategy and compare the results in Tab. 10. Results
suggest the improvements of fine-tuning MAE, especially
on FID and U-IDS. This improvement comes from the bet-
ter adaptation on the real-world masks.
User-study To evaluate the user preference on inpainting
algorithms, we conduct an user-study. Specifically, we ran-
domly select 40 testing images. We ask the user to select the
best inpainting results from the following perspectives re-
spectively: i) Unwanted-object-mitigation (UOM): the gen-
erated region should be context-stable with surrounding un-
masked region, with a preference of not generating new el-
ements; ii) Color-consistency (CC) : the color consistency
between masked and unmasked regions. We collect 100
valid anonymous questionnaire results, and report the av-
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erage selection ratio among all the inpainting algorithms
in Tab. 11. This result validate the efficacy of ASUKA on
alignment with human preference.
Limitation: The ”curse” of self-attention The primary
limitation of ASUKA stems from the inefficacy of the MAE
prior, mainly due to issues within the self-attention module.
Specifically, as shown in Fig. 11, the presence of multiple
similar objects in an image may lead the MAE to incor-
rectly predict a similar object in the masked region, con-
flicting with the goal of object removal. Notably, this curse
of self-attention significantly impacts diffusion-based gen-
erative models. It results in the inability to accurately fol-
low ”blank paper” text prompts, even when employing a
substantial classifier-free guidance scale of 9. This issue is
not unique to SD but is also a common problem in other
advanced text-guided diffusion models, such as OpenAI’s
DALL-E 2 [65] and Adobe’s FileFly [18]. Nevertheless,
ASUKA has the potential to circumvent this issue by modi-
fying the MAE prior, for instance, by instead using a blank
paper image as the input to MAE prior. A more comprehen-
sive solution would involve extra control on self-attention
layers in diffusion models, which we leave as future work.
Potential negative impact As an image editing tool, our
proposed ASUKA will generate images based on user in-
tentions for masking specific parts of the image, potentially
resulting in unrealistic renderings and posing a risk of mis-
use.

10. More Qualitative Examples
Here we provide more qualitative examples on MISATO in
Fig. 12, Fig. 13, Fig. 14, Fig. 15, and Fig. 16. We com-
pare ASUKA with Co-Mod [99], MAT [44], LaMa [75],
MAE-FAR [10], and SD [67]. SD performs unconditional
generation. SD-text utilizes text prompt of “background”.
SD-token utilizes trained prompt for inpainting task using
the same training setting of ASUKA.
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-prompt SD-Repaint ASUKA

Figure 12. More qualitative comparison on MISATO.
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-prompt SD-Repaint ASUKA

Figure 13. More qualitative comparison on MISATO.
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-prompt SD-Repaint ASUKA

Figure 14. More qualitative comparison on MISATO.
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-prompt SD-Repaint ASUKA

Figure 15. More qualitative comparison on MISATO.
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Masked Image Co-Mod MAT LaMa MAE-FAR SD SD-text SD-prompt SD-Repaint ASUKA

Figure 16. More qualitative comparison on MISATO.
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