

LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model

Chenjie Cao, Yunuo Cai, Qiaole Dong, Yikai Wang, Yanwei Fu {cjcao20,yncai20,qldong18,yikaiwang19,yanweifu}@fudan.edu.cn

Our Focus: Reference-image(s) Based Generation

Local Reference: Reference-based Inpainting

Global Reference: Novel-View Synthesis

Our Focus: Reference-image(s) Based Generation

Multi-References

Multi-Targets

How to Inject Reference Image?

Stable Diffusion Generation → **Inpainting**

Concatenate on the channel dimension

Heavy Training Cost

Inputs of Generation \rightarrow Inpainting

Control Net

• Heavy visual encoder.

Unified Filling Right Canvas based on Left Reference

- LeftRefill:
 - Concatenate on the spatial channel, **contextual inpainting**
- > Highlights:
 - Lightweight & Small training cost
 - Reuse off-the-shelf Text-to-Image models Use the self-attention layers to guide the generation!

LeftRefill paints right side of canvas referring to left part as a human painter (image generated by DALLE3)

Framework

Adapting Text-to-Image Diffusion Models

- ► Input:
 - Stitched reference and target images;
- Condition:
 - Use learnable prompts to simulate text prompts;
 - Task Embedding
 - View Embedding
 - Pose Embedding (NVS only)
- > Output:
 - Discard the reference image.

)

Extension to Multi-View: Data Formulation

Multi-References

Multi-Targets

View0 View1 View2 View3

(a) Ref-inpainting (v-to-1)

Extension to Multi-View: Model Formulation

Unshared embeddings

Shared modules

Block causal mask for autoregressive training

)

Generating Training Masks

Matching and confidence filtering

Cropping and points sampling Randomly-Painted masking

(a) Matching-based Masking

(b) Masking for Objaverse images

Training Setup

Reference-Based Inpainting

- > Training Dataset:
 - MegaDepth: 512x512, 80k images (820k pairs);
- Trainable Parameters:
 - Task Embedding: 45 tokens

 - View Embedding: 5 tokens

Training Configuration:

- 1-view: 6k steps of batch size 16;
- ♦ 4-view: 16k steps of batch size 64.

Novel-View Synthesis

- > Training Dataset:
 - Objaverse: 256x256, 800k scenes;
- > Trainable Parameters:
 - Task Embedding: 45 tokens
 - View Embedding: 5 tokens
 - Pose Embedding: 1 token (generated by the 4-channel relative pose input to 2-layer FC)
 - Fine-Tune U-Net
- > Training Configuration:
 - 1-view: 80k steps of batch size 48;
 - ♦ 4-view: 110k steps of batch size 512.

Ref-Inpainting Results

(a) Reference

(b) Masked target

(c) SD

(d) Control+Match

(f) Paint-by-Example

(g) TransFill

(h) LeftRefill

Qualitative and multi-view results

Masked target LefRefill (1-view) LeftRefill (2-view) LeftRefill (3-view) LefRefill (4-view)

Figure 7. Multi-view Ref-inpainting qualitative results. Increasing the reference view number improves the quality of repaired targets.

Table 1. Quantitative results for Ref-inpainting on MegaDepth [27] test set based on matching and manual masks (upper: 1-view; lower: multi-view). 'ExParams': the scale of extra trainable parameters. * means that the uncorrupted ground truth is visible for the matching. 'No stitching': reference and target views are separate without spatial stitching, and only self-attentions are learned across them.

Methods	PSNR ↑	SSIM↑	FID↓	LPIPS↓	ExI
SD (inpainting) [46]	19.841	0.819	30.260	0.1349	+0
ControlNet [64]	19.072	0.744	33.664	0.1816	+36
ControlNet+NewCrossAttn	19.027	0.743	34.170	0.1805	+46
ControlNet+Matching* [55]	20.592	0.763	29.556	0.1565	+36
Perceiver+ImageCLIP [22]	19.338	0.745	32.911	0.1751	+52
Paint-by-Example [62]	18.351	0.797	34.711	0.1604	+86
TransFill [68]	22.744	0.875	26.291	0.1102	_
LeftRefill (no stitching)	20.489	$0.\bar{8}2\bar{7}$	20.125	0.1085	+0.
LeftRefill	20.926	0.836	18.680	0.0961	+0.
LeftRefill (2-view)	21.092	0.836	18.389	0.0969	+0.
LeftRefill (3-view)	21.356	0.840	16.838	0.0901	+0.
LeftRefill (4-view)	21.779	0.847	16.632	0.0839	+0.

Novel-View Synthesis Results

Figure 8. NVS results on Objaverse [10] (row1, 2) and Google Scanned Objects [12] (row3, 4) from a single reference image.

Table 2. Results of 1-view NVS conditioned on different numbers of reference views on Objaverse [10]. 'w.o. AM' indicates NVS results without Adaptive Masking (AM).

Methods	Ref-View	PSNR ↑	SSIM ↑	LPIPS↓	CLIP↑
Zero123 [30]	1	19.402	0.858	0.1309	0.7816
LeftRefill (LoRA)	1	19.514	0.869	0.1534	0.7589
LeftRefill (w.o. AM)	1	21.675	0.887	0.1089	0.7959
LeftRefill	1	21.404	0.882	0.1151	0.7972
LeftRefill	2	22.935	0.895	0.0871	0.8280
LeftRefill	3	24.107	0.908	0.0722	0.8432
LeftRefill	4	24.685	0.911	0.0634	0.8495

Table 3. Results of 4-view NVS generations based on 1 reference view on Objaverse [10]. P-CLIP means pairwise CLIP score showing consistency of generated views. The reference (Ref) can be categorized into the first ground-truth view and the last generated view, while we also provide the AR results of LeftRefill.

Methods	Ref	PSNR ↑	SSIM ↑	LPIPS↓	CLIP↑	P-CLIP↑
Zero123	First	19.265	0.855	0.1366	0.7723	0.7756
Zero123	Last	14.621	0.767	0.2569	0.6921	0.7667
LeftRefill	First	21.573	0.883	0.1143	0.7964	0.7709
LeftRefill	AR	21.271	0.882	0.1195	0.7882	0.7958

Multi-View NVS

Self-Attention Analysis

Visualization of attention scores in LeftRefill across different DDIM steps.

Result (0-ref)

Figure 9. Attention visualization (Algorithm 2) with increased reference views.

Influence of CFG (geometry and texture trade-off)

Reference

Target

CFG=1

CFG=1.5

Figure 14. NVS on Objaverse [9] with different CFG weights.

Figure 15. Ref-inpainting results with different CFG weights, which trade-off between structural and textural recoveries.

Summary

- \succ Lightweight and generalized task formulation based on off-the-shelf T2I models;
- \succ Use specific (task, view, pose) prompt tuning to precisely control the generation process;
- LeftRefill could be easily extended to tackle multi-view generation tasks.

Thanks!

Chenjie Cao, Yunuo Cai, Qiaole Dong, Yikai Wang,

LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model

Yanwei Fu {cjcao20,yncai20,qldong18,yikaiwang19,yanweifu}@fudan.edu.cn