Clean Sample Selection Algorithms with Statistical Sparsity Analysis

Yikai Wang Fudan University

Background: Noisy Label in the Training Set

Noisy labels: mis-annotated labels. V.S.

Annotator mistakes

(supervised learning)

• Noisy search engine results

(webly/weak supervised learning)

The training data is corrupted in the label space with unknown corruption process.

Clean labels: correctly-annotated labels.

Apple Buy Apple Watch Ultra 2 G...

(semi-supervised learning)

Target: Identify Clean Subset to Improve Model Training

Noisy training set

Motivation: Different behaviors between clean and noisy labels;

2) Control the false-selection-rate in general scenarios;

Method: Measure the different behaviors; Theory: When will our method work? 1) The sufficient conditions to identify all the clean data; Algorithm: How to incorporate sample selection with model training? Application: semi-supervised few-shot learning; learning with noisy labels.

Outline

4. Theory: False-Selection-Rate Control Theorem →

Clean Sample Selection with Statistical Sparsity

1. Method: Instance Credibility Inference

2. Theory: Noisy Set Recovery
 3. Method: Knockoffs Comparison
 4. Theory: False-Selection-Rate Control
 5. Applications

Identify Noisy Label: Linear Assumption in Networks

 $y_i = \text{SoftMax}(\boldsymbol{x}_i^{\top}\beta)$

"Sparse assumption": there are fewer single noisy *patterns* than clean *patterns*. In a **2-class** classification task, there should be more clean samples in class A than **one-second** of all samples labeled as A.

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020.

Identify Noisy Data in Label Space: The Indicator

Linear model

[Wright et al. TPAMI 09] [She et al. JASA 11] [Fu et al. ECCV 14, TPAMI 16.] [Fan et al. Statistical Sinica 18] [Yikai Wang et al. CVPR 20, TPAMI 21, CVPR 22, TPAMI 23]

Motivation of γ

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top}\hat{\beta}$ Leave-one-out externally studentized residual: $t_{i} = \frac{y_{i} - \boldsymbol{x}_{i}^{\top} \hat{\beta}_{(i)}}{\hat{\sigma}_{(i)} (1 + \boldsymbol{x}_{i} (\boldsymbol{X}_{(i)}^{\top} \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_{i})^{1/2}}$ \Leftrightarrow test whether $\gamma = 0$ in $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \gamma \boldsymbol{1}_i + \boldsymbol{\varepsilon}$. $y = Xeta + \epsilon + \gamma$

Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.

$y = x^{\top}\beta + \varepsilon + \gamma$

Select Clean Sample in the Dataset

clean data: zero $\|\gamma\|$; noisy data: large $\|\gamma\|$.

 $oldsymbol{eta},oldsymbol{\gamma}$

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020.

$\operatorname{argmin} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda P\left(\boldsymbol{\gamma}\right)$

Simplification: Remove β

 $\underset{\boldsymbol{\beta},\boldsymbol{\gamma}}{\operatorname{argmin}} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \|\boldsymbol{Y}$

 $\frac{\partial L}{\partial \beta} = 0$

$\operatorname*{argmin}_{\boldsymbol{\gamma}} \left\| \boldsymbol{Y} - \boldsymbol{X} \left(\boldsymbol{X}^{ op} \boldsymbol{X} ight) ight.$

 $H = X \left(X^ op X
ight)^\dagger X^ op$

 $rgmin_{\boldsymbol{\gamma}} \| ilde{\boldsymbol{Y}} - \boldsymbol{X} \|$ A linear regression problem!

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020.

$$-\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda P(\boldsymbol{\gamma})$$

$$\downarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{\gamma})$$

$$\dagger \boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{\gamma}) - \boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda P(\boldsymbol{\gamma})$$

$$\downarrow \tilde{\boldsymbol{X}} = \boldsymbol{I} - \boldsymbol{H}, \tilde{\boldsymbol{Y}} = \tilde{\boldsymbol{X}}\boldsymbol{Y}$$

$$\tilde{\boldsymbol{X}}\boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda P(\boldsymbol{\gamma})$$

Simplification: How to decide λ ?

We regard $\hat{\gamma} = f(\lambda)$.

When
$$\lambda \to \infty$$
, $\hat{\gamma} \to 0$.

With $P(\boldsymbol{\gamma}) = \sum_{i=1}^{n} \|\boldsymbol{\gamma}_i\|_2$, γ vanishes instance by instance. $Z_i = \sup\{\lambda : \|\hat{\gamma}_i(\lambda)\| \neq 0\}$

[1] Friedman, et al. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software.

 $\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda P\left(\boldsymbol{\gamma}\right)$

Select Clean Sample in the Dataset (Callback)

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020.

Noisy Set Recovery Advantages and Disadvantages

Method: Instance Credibility Inference
 Theory: Noisy Set Recovery
 Method: Knockoffs Comparison
 Theory: False-Selection-Rate Control
 Applications

Noisy Set Recovery

$$y_i = x_i^{\top}\beta + \varepsilon + \gamma_i$$

Theorem 1 (Noisy set recovery). *Assume that:* C1, Restricted eigenvalue: $\lambda_{\min}(\check{X}_{S}^{\top}\check{X}_{S}) = C_{\min} > 0;$ C2, Irrepresentability: there exists a $\eta \in (0,1]$, such that $\|\check{X}_{\mathcal{S}^c}^{\top}\check{X}_{\mathcal{S}}(\check{X}_{\mathcal{S}}^{\top}\check{X}_{\mathcal{S}})^{-1}\|_{\infty} \leq 1 - \eta;$ C3, Large error: $\vec{\gamma}_{\min}^* \coloneqq \min_{i \in S} |\vec{\gamma}_i^*| > h(\lambda, \eta, X, \vec{\gamma}^*);$ where $\|A\|_{\infty} \coloneqq \max_{i \in j} |A_{i,j}|$, and $h(\lambda, \eta, X, \vec{\gamma}^*) =$ $\lambda \eta / \sqrt{C_{\min} \mu_{\mathbf{X}}} + \lambda \| (\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}})^{-1} \operatorname{sign}(\mathbf{\vec{\gamma}}_{\mathcal{S}}^{*}) \|_{\infty}.$ Let $\lambda \geq \frac{2\sigma\sqrt{\mu_{\mathbf{X}}}}{n}\sqrt{\log cn}$. Then with probability greater than $1-2(cn)^{-1}$, model Eq. (8) has a unique solution $\hat{\vec{\gamma}}$ such that: 1) If C1 and C2 hold, $\hat{C^c} \subseteq \overline{C^c}$;2) If C1, C2 and C3 hold, $\hat{C^c} = C^c$.

Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. TPAMI 2021.

$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda P\left(\boldsymbol{\gamma}\right)$ When can our method identify all the clean/noisy data?

Noisy Set Recovery (in natural language): 1. With C1-C3, we can identify all the noisy data. 2. With C1-C2, the identified noisy data is the subset of ground-truth noisy data.

Verification: Will satisfying conditions lead to improved accuracy?

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes	0	424	1035	40
Total Episodes	0	793	1164	43
I/T		53.5%	88.9%	93.0%

1) In more than half of the experiments the assumptions C1-C2 are satisfied. Most of them (89.0%) will achieve better performance after self-taught with ICI.

2) When all the assumptions are satisfied, we will get better performance in a high ratio (93.0%).

3) Even if C2-C3 are not satisfied, we still have the chance of improving the performance (53.5%).

Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. TPAMI 2021.

Challenges of Noisy Set Recovery $\operatorname{argmin}_{\boldsymbol{\gamma}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda P\left(\boldsymbol{\gamma}\right)$ $y_i = x_i^\top \beta + \varepsilon + \gamma_i$

Theorem 1 (Noisy set recovery). *Assume that:* C1, Restricted eigenvalue: $\lambda_{\min}(\mathbf{X}_{S}^{\top}\mathbf{X}_{S}) = C_{\min} > 0;$ **C2, Irrepresentability:** there exists a $\eta \in (0,1]$, such that $\| \check{X}_{\mathcal{S}^c}^\top \check{X}_{\mathcal{S}} (\check{X}_{\mathcal{S}}^\top \check{X}_{\mathcal{S}})^{-1} \|_{\infty} \leq 1 - \eta;$ C3, Large error: $\vec{\gamma}_{\min}^* \coloneqq \min_{i \in S} |\vec{\gamma}_i^*| > h(\lambda, \eta, X, \vec{\gamma}^*);$ where $\|A\|_{\infty} := \max_i \sum_j |A_{i,j}|$, and $h(\lambda, \eta, X, \vec{\gamma}^*) =$ $\lambda \eta / \sqrt{C_{\min} \mu_{\mathbf{X}}} + \lambda \| (\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}})^{-1} \operatorname{sign}(\mathbf{\vec{\gamma}}_{\mathcal{S}}^{*}) \|_{\infty}.$ Let $\lambda \geq \frac{2\sigma\sqrt{\mu_{\mathbf{X}}}}{n}\sqrt{\log cn}$. Then with probability greater than $1-2(cn)^{-1}$, model Eq. (8) has a unique solution $\vec{\gamma}$ such that: 1) If C1 and C2 hold, $\hat{C^c} \subseteq C^c$;2) If C1, C2 and C3 hold, $\hat{C^c} = C^c$.

Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. TPAMI 2021.

Uncontrollable Challenges:

- > The C2 requires knowledge about the ground-truth noisy set, which is unknown in practice.
- \succ Our target is to select clean data, but in most cases (C1-C2 satisfied), we will still falsely-select noisy data, and we do not know the false-selection-rate.

Can we control the false-selection-rate in general scenarios?

Clean Sample Selection with Controlled False-Selection-Rate

Method: Instance Credibility Inference
 Theory: Noisy Set Recovery

3. Method: Knockoffs Comparison

Theory: False-Selection-Rate Control
 Applications

Motivation: Bi-Level Comparison

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

We transform the sample selection problem into a ranking problem:

 $Z_i < Z_j \Leftrightarrow \text{ sample } i \text{ is more reliably than sample } j$

Is the label of sample *i* more reliably than another label?

 $Y_i(1,0,0) \xrightarrow{\text{Permute}} (0,1,0)\tilde{Y}_i$ $\stackrel{!}{\longleftarrow} \text{Compare} \xleftarrow{!}$

Motivation: An extra sign comparison

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

Label-Knockoff Comparison

Select data with small negative statistics:

 $C_2 \coloneqq \{j : -T \le W_j < 0\}, \quad T = \max$

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

clean data: zero $\|\gamma\|$, small Z; noisy data: large $\|\gamma\|$, large Z.

$$x \left\{ t > 0 : \frac{1 + \# \{j : 0 < W_j \le t\}}{\# \{j : -t \le W_j < 0\} \lor 1} \le q \right\}$$

Knockoff Comparison: Why Permutation Label?

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

- ➤ Clean label → noisy label: Ideally small negative W.
- Noisy label → clean label (¹/_{c-1}), noisy label (^{c-2}/_{c-1}), where c denotes the number of classes.
 i) Noisy → clean:

 large positive W.
 Noisy → noisy:

 large W.
 approximately equal probability to be positive or negative.
- Select data with small negative statistics:

Knockoff Comparison: How to decide T (intuitively)?

Select data with small negative statistics:

 \succ Clean label \rightarrow noisy label: Ideally small negative W.

> Noisy label \rightarrow clean label $\left(\frac{1}{c-1}\right)$, noisy label $\left(\frac{c-2}{c-1}\right)$, where c denotes the number of classes. i) Noisy \rightarrow clean: large positive W. ii) Noisy \rightarrow noisy: large W. approximately equal probability to be positive or negative.

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

Knockoff Comparison: How to decide T (formally)?

Select data with small negative statistics:

$$C_2 \coloneqq \{j : -T \le W_j < 0\}, \quad T = \max\left\{t > 0 : \frac{1 + \#\{j : 0 < W_j \le t\}}{\#\{j : -t \le W_j < 0\} \lor 1} \le q\right\}$$

We aim to control the false selection rate:

$$\mathrm{FSR} = \mathbb{E} \left[\frac{\# \left\{ j : j \notin \mathcal{H}_0 \cap \hat{\mathcal{C}} \right\}}{\# \left\{ j : j \in \hat{\mathcal{C}} \right\} \lor 1} \right]$$

And in our problem, FSR becomes:

$$\operatorname{FSR}(t) = \mathbb{E}\left[\frac{\#\left\{j: \boldsymbol{\gamma}_{j} \neq 0 \text{ and } -t \leq W_{j} < 0\right\}}{\#\left\{j: -t \leq W_{j} < 0\right\} \lor 1}\right]$$

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

We can decompose it into:

$$\mathbb{E}\left[\frac{\#\{\gamma_{j}\neq 0, -t\leq W_{j}<0\}}{1+\#\{\gamma_{j}\neq 0, 0< W_{j}\leq t\}} \cdot \frac{1+\#\{\gamma_{j}\neq 0, 0< W_{j}\leq t\}}{\#\{-t\leq W_{j}<0\}\vee 1}\right]$$

$$\leq \mathbb{E}\left[\frac{\#\{\gamma_{j}\neq 0, -t\leq W_{j}<0\}}{1+\#\{\gamma_{j}\neq 0, 0< W_{j}\leq t\}}\frac{1+\#\{0< W_{j}\leq t\}}{\#\{-t\leq W_{j}<0\}\vee 1}\right]$$

$$\leq \mathbb{E}\left[\frac{\#\{\gamma_{j}\neq 0, -t\leq W_{j}<0\}}{1+\#\{\gamma_{j}\neq 0, 0< W_{j}\leq t\}}q\right]$$

False-Selection-Rate Control in general scenarios

Method: Instance Credibility Inference
 Theory: Noisy Set Recovery
 Method: Knockoffs Comparison

4. Theory: False-Selection-Rate Control5. Applications

False-Selection-Rate Control

the solution of our method holds

with the threshold T for two subsets defined respectively as

$$T_i = \max\left\{t \in \mathcal{W} : \frac{1 + \#\{j : 0 < W_j \le t\}}{\#\{j : -t \le W_j < 0\} \lor 1} \le \frac{c - 2}{2c}q\right\}.$$

Advantages:

- 1. No complicate conditions;
- 2. Able to guide practical applications;

Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

 $y_i = x_i^{\dagger} \beta + \varepsilon + \gamma_i$

Theorem 1 (FSR control). For c-class classification task, and for all $0 < q \leq 1$,

 $FSR(T) \le q$

Limitations:

- 1. Too small q leads to empty selected clean subset;
- 2. Extra requirement: independence between β and γ .

Clean Sample Selection

in Real Problems

1. Method: Instance Credibility Inference 2. Theory: Noisy Set Recovery 3. Method: Knockoffs Comparison 4. Theory: False-Selection-Rate Control 5. Applications

Application 1: Semi-Supervised Few-Shot Learning

Binary classification with many labeled data

Tackle machine learning problem with only limited training data provided.

Few-shot binary classification

Few-shot binary classification with unlabeled data

Framework for Semi-Supervised Few-Shot Learning

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020. Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.

Updating the Unlabeled Set

Application 2: Learning with Noisy Labels

Directly trains a neural network from large scale noisy training dataset.

Framework for Learning with Noisy Labels

Bag of Tricks to Better Utilize Clean Sample Selection Algorithm

Encourage the linear relationship:

 \succ In semi-supervised few-shot learning:

We have pre-trained feature extractor, and we have ground-truth clean training set. \succ In learning with noisy labels:

1. Our first attempt is to append a sparse penalty on the network prediction:

$$\ell(x_i, y_i) = 1_{i \in \mathcal{C}} (\ell_{\mathrm{CE}}(x_i, y_i) + \lambda \| x_i^\top W_{\mathrm{fc}} \|_q)$$

2. We can use self-supervised training to pre-train the backbone.

Scale up to large datasets:

Fully utilize the noisy data:

$$\tilde{\mathbf{mg}} = \mathbf{M} \odot \operatorname{img}_{\text{clean}} + (1 - \mathbf{M}) \odot \operatorname{img}_{\text{noisy}}$$

 $\tilde{\mathbf{y}} = \lambda \mathbf{y}_{\text{clean}} + (1 - \lambda) \mathbf{y}_{\text{noisy}}$

Yikai Wang et al. [CVPR20][TPAMI21][CVPR22][TPAMI23]

$$\mathcal{L}\left(ilde{ ext{img}}, ilde{oldsymbol{y}}
ight) = \mathcal{L}_{ ext{CE}}\left(ilde{ ext{img}}, ilde{oldsymbol{y}}
ight)$$

Classification Performance on Few-Shot Learning

The Averaged Accuracies With 95 percent Confidence Intervals Over 2000 Episodes on Several Datasets

Setting	Model	<i>mini</i> Im	ageNet	<i>tiered</i> ImageNet		CIFAR-FS		CUB	
		1shot	5shot	1shot	5shot	1shot	5shot	1shot	5shot
In.	Baseline [*] [20]	$51.75 {\pm} 0.80$	$74.27 {\pm} 0.63$	-	-	-	-	$65.51 {\pm} 0.87$	$82.85 {\pm} 0.55$
	Baseline++* [20]	$51.87 {\pm} 0.77$	$75.68 {\pm} 0.63$	-	-	-	-	$67.02 {\pm} 0.90$	$83.58 {\pm} 0.54$
	MatchingNet* [10]	$52.91^1 {\pm} 0.88$	$68.88^1{\pm}0.69$	-	-	-	-	$72.36^1 {\pm} 0.90$	$83.64^1 \pm 0.60$
	ProtoNet* [8]	$54.16^{1}{\pm}0.82$	$73.68^1 {\pm} 0.65$	-	-	72.20^{3}	83.50^{3}	$71.88^1 {\pm} 0.91$	$87.42^{1}\pm0.48$
	MAML* [7]	$49.61^1 {\pm} 0.92$	$65.72^1 \pm 0.77$	-	-	-	-	$69.96^1 {\pm} 1.01$	$82.70^1 {\pm} 0.65$
	RelationNet* [9]	$52.48^{1}{\pm}0.86$	$69.83^1{\pm}0.68$	-	-	-	-	$67.59^1 {\pm} 1.02$	$82.75^1 {\pm} 0.58$
	adaResNet [86]	56.88	71.94	-	-	-	-	-	-
	TapNet [87]	61.65	76.36	63.08	80.26	-	-	-	-
	CTM [†] [88]	64.12	80.51	68.41	84.28	-	-	-	-
	MetaOptNet [82]	64.09	80.00	65.81	81.75	72.60	84.30	-	-
Tran.	TPN [22]	59.46	75.65	58.68^{4}	74.26^{4}	65.89^{4}	79.38^{4}	-	-
	TEAM* [26]	60.07	75.90	-	-	70.43	81.25	80.16	87.17
	CAN+T [53]	$67.19 {\pm} 0.55$	$80.64 {\pm} 0.35$	$73.21 {\pm} 0.58$	$84.93 {\pm} 0.38$	-	-	-	-
	DPGN [56]	$67.77 {\pm} 0.32$	$84.60{\pm}0.43$	$72.45{\pm}0.51$	$\textbf{87.24}{\pm}0.39$	$77.90{\pm}0.50$	$90.20{\pm}0.40$	$75.71 {\pm} 0.47$	$91.48{\pm}0.33$
Semi.	MSkM + MTL	62.10^{2}	73.60^{2}	68.6^{2}	81.00^{2}	-	-	-	-
	TPN + MTL	62.70^{2}	74.20^{2}	72.10^{2}	83.30^{2}	-	_	-	-
	MSkM [23]	50.40	64.40	52.40	69.90	-	-	-	-
	TPN [22]	52.78	66.42	55.70	71.00	-	-	-	-
	LST [24]	70.10	78.70	77.70	85.20	-	-	-	-
Tran.	ICIC	$71.29 {\pm} 0.59$	83.12±0.33	$76.13 {\pm} 0.62$	86.73±0.36	$78.47 {\pm} 0.60$	$86.41 {\pm} 0.36$	$90.38 {\pm} 0.42$	94.30±0.20
	ICIR	$72.39{\pm}0.62$	$83.27{\pm}0.33$	$77.48{\pm}0.62$	$86.84{\pm}0.36$	$79.19{\pm}0.63$	$86.66{\pm}0.36$	$90.89 {\pm} 0.43$	$94.36{\pm}0.20$
Semi. 15/15	ICIC	$70.97 {\pm} 0.56$	82.69±0.33	76.00±0.60	86.19±0.36	$78.44{\pm}0.58$	86.10±0.36	89.89±0.42	94.00±0.20
	ICIR	$72.32{\pm}0.58$	$82.78 {\pm} 0.33$	$76.98{\pm}0.61$	$86.24{\pm}0.36$	$79.20{\pm}0.58$	$86.14{\pm}0.36$	$90.45{\pm}0.42$	$94.00{\pm}0.20$
Semi. 30/50	ICIC	$71.43 {\pm} 0.62$	$83.41 {\pm} 0.35$	$78.01 {\pm} 0.63$	$86.86{\pm}0.37$	$80.25 {\pm} 0.58$	86.99±0.36	$91.75 {\pm} 0.39$	$94.42{\pm}0.20$
	ICIR	$\textbf{73.12}{\pm}0.65$	$83.28{\pm}0.37$	$\textbf{78.99}{\pm}0.66$	$86.76 {\pm} 0.39$	$\textbf{80.74}{\pm}0.61$	$87.16{\pm}0.36$	$92.12{\pm}0.40$	$94.52{\pm}0.20$

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020. Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.

Classification Performance on Learning with Noisy Labels (synthetic label noise)

Dataset	Method	Sym. Noise Rate				Asy. Noise Rate		
Dataset	Method	0.2	0.4	0.6	0.8	0.2	0.3	0.4
	Standard	85.7 ± 0.5	81.8 ± 0.6	73.7 ± 1.1	42.0 ± 2.8	88.0 ± 0.3	86.4 ± 0.4	84.9 ± 0.7
	Forgetting	86.0 ± 0.8	82.1 ± 0.7	75.5 ± 0.7	41.3 ± 3.3	89.5 ± 0.2	88.2 ± 0.1	85.0 ± 1.0
	Bootstrap	86.4 ± 0.6	82.5 ± 0.1	75.2 ± 0.8	42.1 ± 3.3	88.8 ± 0.5	87.5 ± 0.5	85.1 ± 0.3
	Forward	85.7 ± 0.4	81.0 ± 0.4	73.3 ± 1.1	31.6 ± 4.0	88.5 ± 0.4	87.3 ± 0.2	85.3 ± 0.6
	Decoupling	87.4 ± 0.3	83.3 ± 0.4	73.8 ± 1.0	36.0 ± 3.2	89.3 ± 0.3	88.1 ± 0.4	85.1 ± 1.0
	MentorNet	88.1 ± 0.3	81.4 ± 0.5	70.4 ± 1.1	31.3 ± 2.9	86.3 ± 0.4	84.8 ± 0.3	78.7 ± 0.4
	Co-teaching	89.2 ± 0.3	86.4 ± 0.4	79.0 ± 0.2	22.9 ± 3.5	90.0 ± 0.2	88.2 ± 0.1	78.4 ± 0.7
	Co-teaching+	89.8 ± 0.2	86.1 ± 0.2	74.0 ± 0.2	17.9 ± 1.1	89.4 ± 0.2	87.1 ± 0.5	71.3 ± 0.8
CIFAR-10	IterNLD	87.9 ± 0.4	83.7 ± 0.4	74.1 ± 0.5	38.0 ± 1.9	89.3 ± 0.3	88.8 ± 0.5	85.0 ± 0.4
	RoG	89.2 ± 0.3	83.5 ± 0.4	77.9 ± 0.6	29.1 ± 1.8	89.6 ± 0.4	88.4 ± 0.5	86.2 ± 0.6
	PENCIL	88.2 ± 0.2	86.6 ± 0.3	74.3 ± 0.6	45.3 ± 1.4	90.2 ± 0.2	88.3 ± 0.2	84.5 ± 0.5
	GCE	88.7 ± 0.3	84.7 ± 0.4	76.1 ± 0.3	41.7 ± 1.0	88.1 ± 0.3	86.0 ± 0.4	81.4 ± 0.6
	SL	89.2 ± 0.5	85.3 ± 0.7	78.0 ± 0.3	44.4 ± 1.1	88.7 ± 0.3	86.3 ± 0.1	81.4 ± 0.7
	TopoFilter	90.2 ± 0.2	87.2 ± 0.4	80.5 ± 0.4	45.7 ± 1.0	90.5 ± 0.2	89.7 ± 0.3	87.9 ± 0.2
	SPR	92.0 ± 0.1	94.6 ± 0.2	91.6 ± 0.2	80.5 ± 0.6	89.0 ± 0.8	90.3 ± 0.8	91.0 ± 0.6
	Knockoffs-SPR	95.4 ± 0.1	94.5 ± 0.1	93.3 ± 0.1	84.6 ± 0.8	95.1 ± 0.1	94.5 ± 0.2	93.6 ± 0.2
	Standard	56.5 ± 0.7	50.4 ± 0.8	38.7 ± 1.0	18.4 ± 0.5	57.3 ± 0.7	52.2 ± 0.4	42.3 ± 0.7
	Forgetting	56.5 ± 0.7	50.6 ± 0.9	38.7 ± 1.0	18.4 ± 0.4	57.5 ± 1.1	52.4 ± 0.8	42.4 ± 0.8
	Bootstrap	56.2 ± 0.5	50.8 ± 0.6	37.7 ± 0.8	19.0 ± 0.6	57.1 ± 0.9	53.0 ± 0.9	43.0 ± 1.0
	Forward	56.4 ± 0.4	49.7 ± 1.3	38.0 ± 1.5	12.8 ± 1.3	56.8 ± 1.0	52.7 ± 0.5	42.0 ± 1.0
	Decoupling	57.8 ± 0.4	49.9 ± 1.0	37.8 ± 0.7	17.0 ± 0.7	60.2 ± 0.9	54.9 ± 0.1	47.2 ± 0.9
	MentorNet	62.9 ± 1.2	52.8 ± 0.7	36.0 ± 1.5	15.1 ± 0.9	62.3 ± 1.3	55.3 ± 0.5	44.4 ± 1.6
	Co-teaching	64.8 ± 0.2	60.3 ± 0.4	46.8 ± 0.7	13.3 ± 2.8	63.6 ± 0.4	58.3 ± 1.1	48.9 ± 0.8
CIFAR-100	Co-teaching+	64.2 ± 0.4	53.1 ± 0.2	25.3 ± 0.5	10.1 ± 1.2	60.9 ± 0.3	56.8 ± 0.5	48.6 ± 0.4
	IterNLD	57.9 ± 0.4	51.2 ± 0.4	38.1 ± 0.9	15.5 ± 0.8	58.1 ± 0.4	53.0 ± 0.3	43.5 ± 0.8
	RoG	63.1 ± 0.3	58.2 ± 0.5	47.4 ± 0.8	20.0 ± 0.9	67.1 ± 0.6	65.6 ± 0.4	58.8 ± 0.1
	PENCIL	64.9 ± 0.3	61.3 ± 0.4	46.6 ± 0.7	17.3 ± 0.8	67.5 ± 0.5	66.0 ± 0.4	61.9 ± 0.4
	GCE	63.6 ± 0.6	59.8 ± 0.5	46.5 ± 1.3	17.0 ± 1.1	64.8 ± 0.9	61.4 ± 1.1	50.4 ± 0.9
	SL	62.1 ± 0.4	55.6 ± 0.6	42.7 ± 0.8	19.5 ± 0.7	59.2 ± 0.6	55.1 ± 0.7	44.8 ± 0.1
	TopoFilter	65.6 ± 0.3	62.0 ± 0.6	47.7 ± 0.5	20.7 ± 1.2	68.0 ± 0.3	66.7 ± 0.6	62.4 ± 0.2
	SPR	72.5 ± 0.2	75.0 ± 0.1	70.9 ± 0.3	38.1 ± 0.8	71.9 ± 0.2	72.4 ± 0.3	70.9 ± 0.5
	Knockoffs-SPR	77.5 ± 0.2	74.3 ± 0.2	67.8 ± 0.4	30.5 ± 1.0	$\textbf{77.3} \pm \textbf{0.4}$	76.3 ± 0.3	73.9 ± 0.6

Classification Performance on Learning with Noisy Labels (real-world label noise)

TABLE 2 Test accuracies(%) on WebVision and ILSVRC12.

Method	WebV	/ision	WebVision \rightarrow ILSVRC12		
method	top1	top5	top1	top5	
F-correction	61.12	82.68	57.36	82.36	
Decoupling	62.54	84.74	58.26	82.26	
D2L	62.68	84.00	57.80	81.36	
MentorNet	63.00	81.40	57.80	79.92	
Co-teaching	63.58	85.20	61.48	84.70	
Iterative-CV	65.24	85.34	61.60	84.98	
DivideMix	77.32	91.64	75.20	90.84	
SPR	77.08	91.40	72.32	90.92	
Knockoffs-SPR	77.96	92.28	74.72	92.88	

TABLE 3 Test accuracies(%) on Clothing1M.

Method	Accuracy		
Cross-Entropy	69.21		
F-correction	69.84		
M -correction	71.00		
Joint-Optim	72.16		
Meta-Cleaner	72.50		
Meta-Learning	73.47		
P-correction	73.49		
TopoFiler	74.10		
DivideMix	74.76		
SPR	71.16		
Knockoffs-SPR	75.20		

Sample Selection Performance

Summary

- Ideologically, we focus on the clean sample selection where the training data is not accurately-labeled.
- **Methodologically**, we propose a series of methods to identify clean samples in the training dataset, with a focus on sufficient noisy set recovery and false-selection-rate control, respectively.
- **Theoretically**, we prove the noisy set recovery theorem and false-selection-rate control theorem, to provide theoretical guarantees of our proposed methods.
- Algorithmically, we design algorithms to better train the learning model with our proposed clean sample selection algorithms, enabling balanced identifiability and complexity to scale up to large datasets.
- Experimentally, we demonstrate the effectiveness and efficiency of our method on semi-supervised fewshot learning and learning with noisy labels.

Yikai Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020. Yikai Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021. Yikai Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022. Yikai Wang et al. Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels. TPAMI 2023.

